Menu

世上最生動的 PCA:直觀理解並應用主成分分析

2020-01-06 (Mon)

這篇文章用世上最生動且實務的方式帶你直觀理解機器學習領域中十分知名且強大的線性降維技巧:主成分分析 PCA。我們將重新回顧你所學過的重要線性代數概念,並實際應用這些概念將數據有效地降維並去除特徵間的關聯。你也將學會如何使用 NumPy 和 scikit-learn 等 Python 函式庫自己實作 PCA。文中也分享使用 PCA 分析線上遊戲《英雄聯盟》公開數據的有趣案例。

我從 AI For Everyone 學到的 10 個重要 AI 概念

2019-03-05 (Tue)

AI For Everyone 是由吳恩達教授開授的一堂線上課程,這篇文章則記錄了我個人在修習完這堂線上課程後整理出的 10 個最重要 AI 概念。除了將這些概念條列出來以外,本文也將逐一介紹每個概念所代表的涵意,幫助讀者快速掌握該課程裡頭的重要 AI 概念,並開始自己的 AI 之旅。

資料科學文摘 Vol.1 AutoML、Airflow 及 DAU

2018-07-29 (Sun)

這週介紹幾篇機器學習、資料工程及 App 分析的優質文章以及重點摘要,關鍵字包含:AutoML、Airflow 以及 DAU / MAU。希望讓更多人能更快地掌握資料科學領域的知識,找出自己有興趣的領域專研,並激盪出更多的討論。透過閱讀大量的相關文章並從它們學習及模仿,我們可以更快地,且有效率地成為一個稱職的資料科學家。

從彼此學習 - 淺談機器學習以及人類學習

2018-06-16 (Sat)

說到近年最熱門的機器學習或者人工智慧,因為知識背景以及觀點的不同,幾乎每個人都有不一樣的見解。雖然我們有千百種定義、無數的專業術語,這篇文章希望用直觀的方式以及具體的例子,讓讀者能夠在跳入一大堆 ML 的教學文章以及線上課程之前,能以一個更高層次且人性化的角度理解機器學習,並進而思考要如何開啟自己的機器學習旅程。

從經驗中學習 - 直觀理解貝氏定理及其應用

2018-05-25 (Fri)

貝氏定理(Bayes' theorem)是機率論中,一個概念簡單卻非常強大的定理。有了機率論的存在,人們才能理性且合理地評估未知事物發生的可能性(例:今天的下雨機率有多少?我中樂透的可能性有多高?),並透過貝氏定理搭配經驗法則來不斷地改善目前的認知,協助我們做更好的決策。這篇將利用生活上我們(或人工智慧)常需要考慮的事情當作引子,如今天的下雨機率是多少?來直觀地了解貝氏定理是怎麼被應用在各式各樣的地方。我們甚至可以效仿貝氏定理的精神,讓自己能更理性地評估未知並從經驗中學習。